Skip to main content

Clinical Trials Search at Vanderbilt-Ingram Cancer Center



Islet Cell and ST2 Axis Dysregulation in Post-Transplant Diabetes Mellitus

Not Available
N/A
Engelhardt, Brian
NCT03415139
VICCBMT1836

Study to Assess Safety and Preliminary Activity of Eribulin Mesylate in Pediatric Participants With Relapsed / Refractory Rhabdomyosarcoma (RMS), Non-rhabdomyosarcoma Soft Tissue Sarcoma (NRSTS) and Ewing Sarcoma (EWS)

Multiple Cancer Types

This study will be conducted as an assessment of the safety and preliminary activity of eribulin mesylate in pediatric participants with relapsed / refractory rhabdomyosarcoma (RMS), non-rhabdomyosarcoma soft tissue sarcoma (NRSTS), or Ewing sarcoma (EWS) to determine whether each cohort warrants further investigation.
Pediatrics, Sarcoma
II
Borinstein, Scott
NCT03441360
VICCPED1838

Web-Based Physical Activity Intervention in Improving Long Term Health in Children and Adolescents with Newly Diagnosed Acute Lymphoblastic Leukemia in First Remission

Multiple Cancer Types

This randomized clinical trial studies how well web-based physical activity intervention works in improving long term health in children and adolescents with newly diagnosed acute lymphoblastic leukemia that shows a decrease in or disappearance of signs and symptoms. Regular physical activity after receiving treatment for cancer may help to maintain a healthy weight and improve energy levels and overall health.
Pediatric Leukemia, Pediatrics
N/A
Esbenshade, Adam
NCT03223753
COGALTE1631

Late Effects after Treatment in Patients with Previously Diagnosed High-Risk Neuroblastoma

Multiple Cancer Types

This research trial studies late effects after treatment in patients with previously diagnosed high-risk neuroblastoma. Studying late effects after treatment may help to decide which treatments for high-risk neuroblastoma are better tolerated with less side effects over time.
Neuroblastoma (Pediatrics), Pediatrics
N/A
Friedman, Debra
NCT03057626
COGALTE15N2

Larotrectinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with NTRK Fusions (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well larotrectinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with NTRK fusions that have spread to other places in the body and have come back or do not respond to treatment. Larotrectinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213704
COGAPEC1621A

Erdafitinib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with FGFR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well erdafitinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders that have spread to other places in the body and have come back or do not respond to treatment with FGFR mutations. Erdafitinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03210714
COGAPEC1621B

PI3K / mTOR Inhibitor LY3023414 in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with TSC or PI3K / MTOR Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well PI3K / mTOR inhibitor LY3023414 works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with TSC or PI3K / MTOR mutations that have spread to other places in the body and have come back or do not respond to treatment. PI3K / mTOR inhibitor LY3023414 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213678
COGAPEC1621D

Selumetinib Sulfate in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Activating MAPK Pathway Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well selumetinib sulfate works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with MAPK pathway activation mutations that have spread to other places in the body and have come back or do not respond to treatment. Selumetinib sulfate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03213691
COGAPEC1621E

Vemurafenib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with BRAF V600 Mutations (A Pediatric MATCH Treatment Trial)

Multiple Cancer Types

This phase II Pediatric MATCH trial studies how well vemurafenib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with BRAF V600 mutations that have spread to other places in the body and have come back or do not respond to treatment. Vemurafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Germ Cell (Pediatrics), Miscellaneous, Neuroblastoma (Pediatrics), Pediatric Lymphoma, Pediatric Solid Tumors, Pediatrics, Wilms / Other Kidney (Pediatrics)
II
Borinstein, Scott
NCT03220035
COGAPEC1621G

Olaparib in Treating Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma, or Histiocytic Disorders with Defects in DNA Damage Repair Genes (A Pediatric MATCH Treatment Trial)

This phase II Pediatric MATCH trial studies how well olaparib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with defects in deoxyribonucleic acid (DNA) damage repair genes that have spread to other places in the body and have come back or do not respond to treatment. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Not Available
II
Borinstein, Scott
NCT03233204
COGAPEC1621H

To learn more about any of our clinical
trials, call 1-800-811-8480 or complete
the online Self-Referral Form here: