Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 41 - 50 of 52

Targeted Treatment for Metastatic Prostate Cancer, The PREDICT Trial

This phase II trial evaluates whether genetic testing in prostate cancer is helpful in deciding which study treatment patients are assigned. Patient cancer tissue samples are obtained from a previous surgery or biopsy procedure and tested for deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) abnormalities or mutations in their cancer. Valemetostat tosylate is in a class of medications called EZH1/EZH2 inhibitors. It blocks proteins called EZH1 and EZH2, which may help slow or stop the spread of tumor cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Cabazitaxel injection is in a class of medications called microtubule inhibitors. It works by slowing or stopping the growth of tumor cells. Abiraterone acetate blocks tissues from making androgens (male hormones), such as testosterone. This may cause the death of tumor cells that need androgens to grow. It is a type of anti-androgen. Enzalutamide is in a class of medications called androgen receptor inhibitors. It works by blocking the effects of androgen (a male reproductive hormone) to stop the growth and spread of tumor cells. Lutetium Lu 177 vipivotide tetraxetan is in a class of medications called radiopharmaceuticals. It works by targeting and delivering radiation directly to tumor cells which damages and kills these cells. Assigning patients to targeted treatment based on genetic testing may help shrink or slow the cancer from growing
Not Available
II
Schaffer, Kerry
NCT06632977
ALLUROA032102

Testing the Use of Neratinib or the Combination of Neratinib and Palbociclib Targeted Treatment for HER2+ Solid Tumors (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial compares the effect of neratinib to the combination of neratinib and palbociclib in treating patients with HER2 positive solid tumors. Neratinib and palbociclib are in a class of medications called kinase inhibitors. They work by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of tumor cells. Giving neratinib and palbociclib in combination may shrink or stabilize cancers that over-express a specific biomarker called HER2.
Not Available
II
Choe, Jennifer
NCT06126276
ECOGMDEAY191-N5

Tipifarnib and Naxitamab for Relapsed/Refractory Neuroblastoma

The purpose of this study is to evaluate the investigational drug, tipifarnib (a pill taken by mouth), in combination with the Food and Drug Administration (FDA) approved drug, naxitimab, administered intravenously (IV; a liquid that continuously goes into your body through a tube that has been placed during a surgery into one of your veins). Naxitamab is FDA approved for pediatric patients 1 year of age and older and adult patients with relapsed or refractory high-risk neuroblastoma in the bone or bone marrow who have demonstrated a partial response, minor response, or stable disease to prior therapy, it may not be approved in the type of disease used in this study.

The goals of this part of the study are:

* Test the safety and tolerability of tipifarnib in combination with naxitimab in patients with cancer
* To determine the activity of study treatments chosen based on:
* How each subject responds to the study treatment
* How long a subject lives without their disease returning/progressing
Not Available
II
Benedetti, Daniel
NCT06540963
VICCPED24540

Atezolizumab + Sacituzumab Govitecan to Prevent Recurrence in TNBC (ASPRIA)

Breast

The purpose of this study is to determine if a combination of two drugs sacituzumab govitecan and atezolizumab works as a treatment for residual cancer in the breast or lymph nodes and have circulating tumor DNA in the blood.

This research study involves the following investigational drugs:

* Sacituzumab govitecan
* Atezolizumab
Breast
II
Abramson, Vandana
NCT04434040
VICCBRE2056

Testing the Use of AMG 510 (Sotorasib) and Panitumumab as a Targeted Treatment for KRAS G12C Mutant Solid Tumor Cancers (A ComboMATCH Treatment Trial)

This phase II ComboMATCH treatment trial tests how well AMG 510 (sotorasib) with or without panitumumab works in treating patients with KRAS G12C mutant solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Sotorasib is in a class of medications called KRAS inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop or slow the spread of cancer cells. Panitumumab is in a class of medications called monoclonal antibodies. It works by slowing or stopping the growth of cancer cells. Giving combination panitumumab and sotorasib may kill more tumor cells in patients with advanced solid tumors with KRAS G12C mutation.
Not Available
II
Choe, Jennifer
NCT05638295
ECOGMDEAY191-E5

Testing the Effectiveness of Two Immunotherapy Drugs (Nivolumab and Ipilimumab) With One Anti-cancer Targeted Drug (Cabozantinib) for Rare Genitourinary Tumors

Multiple Cancer Types

This phase II trial studies how well cabozantinib works in combination with nivolumab and ipilimumab in treating patients with rare genitourinary (GU) tumors that has spread from where it first started (primary site) to other places in the body. Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab, and ipilimumab may work better in treating patients with genitourinary tumors that have no treatment options compared to giving cabozantinib, nivolumab, or ipilimumab alone.
Bladder, Kidney (Renal Cell), Rectal
II
Tan, Alan
NCT03866382
ALLIANCEUROA031702

Canakinumab for the Prevention of Progression to Cancer in Patients With Clonal Cytopenias of Unknown Significance, IMPACT Study

Leukemia

This phase II trial tests how well canakinumab works to prevent progression to cancer in patients with clonal cytopenias of unknown significance (CCUS). CCUS is a blood condition defined by a decrease in blood cells. Blood cells are composed of either red blood cells, white blood cells, or platelets. In patients with CCUS, blood counts have been low for a long period of time. Patients with CCUS also have a mutation in one of the genes that are responsible for helping blood cells develop. The combination of genetic mutations and low blood cell counts puts patients with CCUS at a higher risk to develop blood cancers in the future. This transformation from low blood cell counts to cancer may be caused by inflammation in the body. Canakinumab is a monoclonal antibody that may block inflammation in the body by targeting a specific antibody called the anti-human interleukin-1beta (IL-1beta).
Leukemia
II
Kishtagari, Ashwin
NCT05641831
VICC-ITHEM23019

Outpatient Administration of Teclistamab or Talquetamab for Multiple Myeloma

Multiple Myeloma

This is a phase II study to evaluate the outpatient administration of Teclistamab or Talquetamab in Multiple Myeloma patients
Multiple Myeloma
II
Baljevic, Muhamed
NCT05972135
VICCPCL24566

Targeted Therapy Directed by Genetic Testing in Treating Patients With Locally Advanced or Advanced Solid Tumors, The ComboMATCH Screening Trial

Multiple Cancer Types

This ComboMATCH patient screening trial is the gateway to a coordinated set of clinical trials to study cancer treatment directed by genetic testing. Patients with solid tumors that have spread to nearby tissue or lymph nodes (locally advanced) or have spread to other places in the body (advanced) and have progressed on at least one line of standard systemic therapy or have no standard treatment that has been shown to prolong overall survival may be candidates for these trials. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with some genetic changes or abnormalities (mutations) may benefit from treatment that targets that particular genetic mutation. ComboMATCH is designed to match patients to a treatment that may work to control their tumor and may help doctors plan better treatment for patients with locally advanced or advanced solid tumors.
Breast, Gastrointestinal, Gynecologic, Head/Neck, Lung, Melanoma, Neuro-Oncology, Sarcoma, Urologic
II
Choe, Jennifer
NCT05564377
VICC-NTMDT23238

Sequential Therapy in Multiple Myeloma Guided by MRD Assessments

Multiple Myeloma

This research study will determine the proportion of patients with lowest minimal residual disease (MRD) response obtainable after receiving 6 cycles of study treatment. Minimal residual disease is multiple myeloma cells below the level of 1 cancer cell out of 100,000 in the bone marrow.

For patients who become MRD "negative" (i.e. less than 1 cancer cell out of 100,000) at the end of 6 cycles of therapy, this study will study if that good response can be maintained with 3 additional cycles of treatment instead of use of autologous hematopoietic cell transplantation (AHCT).

For patients who are MRD "positive" at the end of 6 cycles of therapy, this study will answer whether more patients can become and remain MRD "negative" with AHCT plus teclistamab in combination with daratumumab when compared with patients who undergo AHCT followed by lenalidomide (an established anti-myeloma drug) plus daratumumab.
Multiple Myeloma
II
Baljevic, Muhamed
NCT05231629
VICC-ITPCL23014