Testing What Happens When an Immunotherapy Drug (Pembrolizumab) is Given by Itself Compared to the Usual Treatment of Chemotherapy With Radiation After Surgery for Recurrent Head and Neck Squamous Cell Carcinoma
Head/Neck
Head/Neck
This phase II trial studies the effect of pembrolizumab alone compared to the usual approach (chemotherapy \[cisplatin and carboplatin\] plus radiation therapy) after surgery in treating patients with head and neck squamous cell carcinoma that has come back (recurrent) or patients with a second head and neck cancer that is not from metastasis (primary). Radiation therapy uses high energy radiation or protons to kill tumor cells and shrink tumors. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of cancer cells. Carboplatin is also in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab alone after surgery may work better than the usual approach in shrinking recurrent or primary head and neck squamous cell carcinoma.
Head/Neck
II
Choe, Jennifer
NCT04671667
ECOGHNEA3191
Split Course Adaptive Radiation Therapy With Pembrolizumab With/Without Chemotherapy for Treating Stage IV Lung Cancer
Multiple Cancer Types
This phase I/II trial tests the safety and efficacy of split-course adaptive radiation therapy in combination with immunotherapy with or without chemotherapy for the treatment of patients with stage IV lung cancer or lung cancer that that has spread to nearby tissue or lymph nodes (locally advanced). Radiation therapy is a standard cancer treatment that uses high energy rays to kill cancer cells and shrink tumors. Split-course adaptive radiation therapy uses patient disease response to alter the intensity of the radiation therapy. Immunotherapy with monoclonal antibodies such as pembrolizumab, ipilimumab, cemiplimab, atezolizumab or nivolumab may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs like carboplatin, pemetrexed, and paclitaxel work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving split-course adaptive radiation therapy with standard treatments like immunotherapy and chemotherapy may be more effective at treating stage IV or locally advanced lung cancer than giving them alone.
Lung,
Non Small Cell,
Phase I
I/II
Osmundson, Evan
NCT05501665
VICCTHOP2185
International Penile Advanced Cancer Trial (International Rare Cancers Initiative Study)
Miscellaneous
Miscellaneous
This is an international phase III trial, with a Bayesian design, incorporating two sequential randomisations. It efficiently examines a series of questions that routinely arise in the sequencing of treatment. The study design has evolved from lengthy international consultation that has enabled us to build consensus over which questions arise from current knowledge and practice. It will enable potential randomisation for the majority of patients with inguinal lymph node metastases and will provide data to inform future clinical decisions.
InPACT-neoadjuvant patients are stratified by disease burden as assessed by radiological criteria. Treatment options are then defined according to the disease burden strata. Treatment is allocated by randomisation. Patients may be allocated to one of three initial treatments:
A. standard surgery (ILND); B. neoadjuvant chemotherapy followed by standard surgery (ILND); or C. neoadjuvant chemoradiotherapy followed by standard surgery (ILND).
After ILND, patients are defined as being at low or high risk of recurrence based on histological interpretation of the ILND specimen. Patients at high risk of relapse are eligible for InPACT-pelvis, where they are randomised to either:
P. prophylactic PLND Q. no prophylactic PLND
InPACT-neoadjuvant patients are stratified by disease burden as assessed by radiological criteria. Treatment options are then defined according to the disease burden strata. Treatment is allocated by randomisation. Patients may be allocated to one of three initial treatments:
A. standard surgery (ILND); B. neoadjuvant chemotherapy followed by standard surgery (ILND); or C. neoadjuvant chemoradiotherapy followed by standard surgery (ILND).
After ILND, patients are defined as being at low or high risk of recurrence based on histological interpretation of the ILND specimen. Patients at high risk of relapse are eligible for InPACT-pelvis, where they are randomised to either:
P. prophylactic PLND Q. no prophylactic PLND
Miscellaneous
III
Rini, Brian
NCT02305654
ECOGUROEA8134
A Study to Compare Standard Therapy to Treat Hodgkin Lymphoma to the Use of Two Drugs, Brentuximab Vedotin and Nivolumab
Multiple Cancer Types
This phase III trial compares the effect of adding immunotherapy (brentuximab vedotin and nivolumab) to standard treatment (chemotherapy with or without radiation) to the standard treatment alone in improving survival in patients with stage I and II classical Hodgkin lymphoma. Brentuximab vedotin is in a class of medications called antibody-drug conjugates. It is made of a monoclonal antibody called brentuximab that is linked to a cytotoxic agent called vedotin. Brentuximab attaches to CD30 positive lymphoma cells in a targeted way and delivers vedotin to kill them. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs such as doxorubicin hydrochloride, bleomycin sulfate, vinblastine sulfate, dacarbazine, and procarbazine hydrochloride work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. It may also lower the body's immune response. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Vincristine is in a class of medications called vinca alkaloids. It works by stopping cancer cells from growing and dividing and may kill them. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Adding immunotherapy to the standard treatment of chemotherapy with or without radiation may increase survival and/or fewer short-term or long-term side effects in patients with classical Hodgkin lymphoma compared to the standard treatment alone.
Pediatric Lymphoma,
Pediatrics
III
Smith, Christine
NCT05675410
VICC-NTPED23306
Testing Longer Duration Radiation Therapy Versus the Usual Radiation Therapy in Patients With Cancer That Has Spread to the Brain
This phase III trial compares the effectiveness of fractionated stereotactic radiosurgery (FSRS) to usual care stereotactic radiosurgery (SRS) in treating patients with cancer that has spread from where it first started to the brain. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. FSRS delivers a high dose of radiation to the tumor over 3 treatments. SRS is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. FSRS may be more effective compared to SRS in treating patients with cancer that has spread to the brain.
Not Available
III
Cmelak, Anthony
NCT06500455
NRGNEUBN013
Trial of Orca-T Following Reduced Intensity or Nonmyeloablative Conditioning in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome
Multiple Cancer Types
This study will evaluate the safety, tolerability, and efficacy of Orca-T in participants undergoing reduced intensity or non-myeloablative allogeneic hematopoietic cell transplantation (alloHCT) for hematologic malignancies. Orca-T is an allogeneic stem cell and T-cell immunotherapy biologic manufactured for each patient (transplant recipient) from the mobilized peripheral blood of a specific, unique donor. It is composed of purified hematopoietic stem and progenitor cells (HSPCs), purified regulatory T cells (Tregs), and conventional T cells (Tcons).
Leukemia,
Myelodysplastic Syndrome
II
Dholaria, Bhagirathbhai
NCT07216443
VICCCTT25025
Testing the Addition of an Immunotherapy Drug, Cemiplimab (REGN2810), Plus Surgery to the Usual Surgery Alone for Treating Advanced Skin Cancer
Head/Neck
Head/Neck
This phase III trial compares the effect of adding cemiplimab to standard therapy (surgery with or without radiation) versus standard therapy alone in treating patients with stage III/IV squamous cell skin cancer that is able to be removed by surgery (resectable) and that may have come back after a period of improvement (recurrent). The usual treatment for patients with resectable squamous cell skin cancer is the removal of the cancerous tissue (surgery) with or without radiation, which uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Immunotherapy with monoclonal antibodies, such as cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cemiplimab has been approved for the treatment of skin cancer that has spread or that cannot be removed by surgery, but it has not been approved for the treatment of skin cancer than can be removed by surgery. Adding cemiplimab to the usual treatment of surgery with or without radiation may be more effective in treating patients with stage III/IV resectable squamous cell skin cancer than the usual treatment alone.
Head/Neck
III
Choe, Jennifer
NCT06568172
NRGHNHN014
Two Studies for Patients With Unfavorable Intermediate Risk Prostate Cancer Testing Less Intense Treatment for Patients With a Low Gene Risk Score and Testing a More Intense Treatment for Patients With a Higher Gene Risk Score, The Guidance Trial
Prostate
Prostate
This phase III trial uses the Decipher risk score to guide therapy selection. Decipher score is based on the activity of 22 genes in prostate tumor and may predict how likely it is for recurrent prostate cancer to spread (metastasize) to other parts of the body. Decipher score in this study is used for patient selection and the two variations of treatment to be studied: intensification for higher Decipher score or de-intensification for low Decipher score. Patients with higher Decipher risk score will be assigned to the part of the study that compares the use of 6 months of the usual treatment (hormone therapy and radiation treatment) to the use of darolutamide plus the usual treatment (intensification). The purpose of this section of the study is to determine whether the additional drug can reduce the chance of cancer coming back and spreading in patients with higher Decipher score. The addition of darolutamide to the usual treatment may better control the cancer and prevent it from spreading. Alternatively, patients with low Decipher risk score will be assigned to the part of the study that compares the use of radiation treatment alone (de-intensification) to the usual approach (6 months of hormone therapy plus radiation). The purpose of this part of the study is to determine if radiation treatment alone is as effective compared to the usual treatment without affecting the chance of tumor coming back in patients with low Decipher score prostate cancer. Radiation therapy uses high energy to kill tumor cells and reduce the tumor size. Hormone therapy drugs such as darolutamide suppress or block the production or action of male hormones that play role in prostate cancer development. Effect of radiation treatment alone in patients with low Decipher score prostate cancer could be the same as the usual approach in stabilizing prostate cancer and preventing it from spreading, while avoiding the side effects associated with hormonal therapy.
Prostate
III
Kirschner, Austin
NCT05050084
VICC-NTURO23322
Phase I/II Trial in ES-SCLC to Enhance Response to Atezolizumab Plus Chemotherapy With Total Body Irradiation
Multiple Cancer Types
This phase I/II trial studies the side effects, safety, and effectiveness of low dose radiation to the entire body (total body irradiation \[TBI\]) and higher dose radiation to known areas of cancer (hypofractionated radiation therapy \[H-RT\]) combined with atezolizumab and chemotherapy (carboplatin \& etoposide) in treating patients with small cell lung cancer that has spread to disease sites outside of the lung (extensive stage). Extensive stage disease has historically been treated with chemotherapy alone with consideration of chest (thoracic) radiation therapy for those with response to chemotherapy, as well as consideration of preventative radiation therapy to the head (prophylactic cranial irradiation). Emerging evidence supports the synergistic interactions between immunotherapy and radiation therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of tumor cells. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill tumor cells. Combining TBI and H-RT with atezolizumab and chemotherapy may improve response to treatment.
Lung,
Small Cell
I/II
Osmundson, Evan
NCT06110572
VICCTHOP2206
Testing Shorter Duration Radiation Therapy Versus the Usual Radiation Therapy in Patients Receiving the Usual Chemotherapy Treatment for Bladder Cancer, ARCHER Study
Bladder
Bladder
This phase III trial compares the effect of shorter term radiation (ultra-hypofractionated) therapy to the usual radiation therapy (hypofractionation) with standard of care chemotherapy, with cisplatin, gemcitabine or mitomycin and 5-fluorouracil for the treatment of patients with muscle invasive bladder cancer. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Ultra-hypofractionated radiation therapy delivers radiation over an even shorter period of time than hypofractionated radiation therapy. Cisplatin is in a class of medications known as platinum-containing compounds. It works by killing, stopping or slowing the growth of tumor cells. Gemcitabine is a chemotherapy drug that blocks the cells from making DNA and may kill tumor cells. Chemotherapy drugs, such as mitomycin-C and 5-fluorouracil (5-FU), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ultra-hypofractionated radiation may be equally effective as hypofractionated therapy for patients with muscle invasive bladder cancer.
Bladder
III
Kirschner, Austin
NCT07097142
NRGUROGU015