Skip to main content

Physician Search

 

Consuelo Wilkins, MD, MSCI, Senior Vice President for Health Equity and Inclusive Excellence for Vanderbilt University Medical Center (VUMC) and Senior Associate Dean for Health Equity and Inclusive Excellence for Vanderbilt University School of Medicine, always knew she wanted to be a physician. "Health equity was built into everything I did, even if I didn’t know it or recognize it at the time," Wilkins said. "I have always learned and believed that people are the same — everyone deserves to be healthy, and everyone should have the best opportunities to take care of themselves and their families." Click below to learn more about health equity initiatives.

https://momentum.vicc.org/2021/09/everyone-deserves-to-be-healthy/
Vanderbilt was the lead site for an NIH-funded, phase 2, multicenter influenza vaccine study in pediatric allogeneic hematopoietic stem cell transplant (HCT) recipients that may lead to a change in the current flu vaccine recommendations in this vulnerable population. Natasha Halasa, MD, MPH and colleagues recently published in the New England Journal of Medicine, that two doses of high-dose trivalent flu vaccine resulted in higher amounts of influenza-specific antibodies than two doses of standard dose quadrivalent vaccine.

https://news.vumc.org/2023/03/02/high-dose-flu-vaccine-beneficial-for-pediatric-stem-cell-transplant-patients/

Displaying 101 - 110 of 299

A Study of Adjuvant Pembrolizumab/Vibostolimab (MK-7684A) Versus Pembrolizumab for Resected High-Risk Melanoma in Participants With High-Risk Stage II-IV Melanoma (MK-7684A-010/KEYVIBE-010)

Melanoma

The primary purpose of this study is to compare pembrolizumab/vibostolimab to pembrolizumab
with respect to recurrence-free survival (RFS). The primary hypothesis is that
pembrolizumab/vibostolimab is superior to pembrolizumab with respect to RFS as assessed by
the investigator in participants with high-risk resected Stage IIB, IIC, III and IV melanoma.
Melanoma
III
Johnson, Douglas
NCT05665595
VICC-DTMEL23033

Phase 1b Combo w/ Ribociclib and Alpelisib

Multiple Cancer Types

This is a Phase 1b open-label, 2-part study in 2 treatment groups. The 2 treatment groups are
as follows:

Treatment Group 1: OP-1250 in combination with ribociclib (KISQALI, Novartis Pharmaceuticals
Corporation).

Treatment Group 2: OP-1250 in combination with alpelisib (PIQRAY, Novartis Pharmaceuticals
Corporation).
Breast, Phase I
I
Nunnery, Sara
NCT05508906
VICCBREP2267

Conditioning SCID Infants Diagnosed Early

Multiple Cancer Types

The investigators want to study if lower doses of chemotherapy will help babies with SCID to
achieve good immunity with less short and long-term risks of complications after
transplantation. This trial identifies babies with types of immune deficiencies that are most
likely to succeed with this approach and offers them transplant early in life before they get
severe infections or later if their infections are under control. It includes only patients
receiving unrelated or mismatched related donor transplants.

The study will test if patients receiving transplant using either a low dose busulfan or a
medium dose busulfan will have immune recovery of both T and B cells, measured by the ability
to respond to immunizations after transplant. The exact regimen depends on the subtype of
SCID the patient has. Donors used for transplant must be unrelated or half-matched related
(haploidentical) donors, and peripheral blood stem cells must be used. To minimize the chance
of graft-versus-host disease (GVHD), the stem cells will have most, but not all, of the T
cells removed, using a newer, experimental approach of a well-established technology. Once
the stem cell transplant is completed, patients will be followed for 3 years. Approximately
9-18 months after the transplant, vaccinations will be administered, and a blood test
measuring whether your child's body has responded to the vaccine will be collected.
Hematologic, Pediatrics
II
Connelly, James
NCT03619551
VICCNCPED18122

Ramucirumab and Trifluridine/Tipiracil or Paclitaxel for the Treatment of Patients with Previously Treated Advanced Gastric or Gastroesophageal Junction Cancer

Gastric/Gastroesophageal

This phase II trial studies the effect of the combination of ramucirumab and trifluridine/tipiracil or paclitaxel in treating patients with previously treated gastric or gastroesophageal junction cancer that has spread to other places in the body (advanced). Ramucirumab may damage tumor cells by targeting new blood vessel formation. Trifluridine/tipiracil is a chemotherapy pill and that may damage tumor cells by damaging their deoxyribonucleic acid (DNA). Paclitaxel may block cell growth by stopping cell division which may kill tumor cells. Giving ramucirumab and trifluridine/tipiracil will not be worse than ramucirumab and paclitaxel in treating gastric or gastroesophageal junction cancer.
Gastric/Gastroesophageal
II
Gibson, Mike
NCT04660760
VICCGI2168

Avelumab with Binimetinib, Sacituzumab Govitecan, or Liposomal Doxorubicin in Treating Patients with Stage IV or Unresectable, Recurrent Triple Negative Breast Cancer

Breast

This phase II trial studies how well the combination of avelumab with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan works in treating patients with triple negative breast cancer that is stage IV or is not able to be removed by surgery (unresectable) and has come back (recurrent). Immunotherapy with checkpoint inhibitors like avelumab require activation of the patient's immune system. This trial includes a two week induction or lead-in of medications that can stimulate the immune system. It is our hope that this induction will improve the response to immunotherapy with avelumab. One treatment, sacituzumab govitecan, is a monoclonal antibody called sacituzumab linked to a chemotherapy drug called SN-38. Sacituzumab govitecan is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of tumor cells, known as TROP2 receptors, and delivers SN-38 to kill them. Another treatment, liposomal doxorubicin, is a form of the anticancer drug doxorubicin that is contained in very tiny, fat-like particles. It may have fewer side effects and work better than doxorubicin, and may enhance factors associated with immune response. The third medication is called binimetinib, which may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth, and may help activate the immune system. It is not yet known whether giving avelumab in combination with liposomal doxorubicin with or without binimetinib, or the combination of avelumab with sacituzumab govitecan will work better in treating patients with triple negative breast cancer.
Breast
II
Abramson, Vandana
NCT03971409
VICCBRE1987

Study to Evaluate Safety, Tolerability, and Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects

Neuro-Oncology

The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects
with recurrent malignant gliomas (glioblastoma, or GBM).
Neuro-Oncology
I/II
Merrell, Ryan
NCT03382977
VICCNEUP2234

A Study to Assess the Adverse Events and Change in Disease Activity in Adult Participants With Relapsed or Refractory Multiple Myeloma Receiving Oral ABBV-453 Tablets

Multiple Cancer Types

Multiple myeloma (MM) is a plasma cell disease characterized by the growth of clonal plasma
cells in the bone marrow. The purpose of this study is to assess the safety and toxicity of
ABBV-453 in adult participants with relapsed/refractory (R/R) MM. Adverse events and change
in disease activity will be assessed.

ABBV-453 is an investigational drug being developed for the treatment of R/R MM. Part 1 will
be a monotherapy dose escalation phase to determine the best dose of ABBV-453. In Part 2,
participants are placed in 1 of 3 groups called treatment arms. Each group receives a
different treatment. Approximately 28 to 48 adult participants in Part 1 and 150 to 312 adult
participants in Part 2 with R/R MM will be enrolled in the study in approximately 70 sites
worldwide.

In Part 1 and the Japan Cohort, Participants will receive oral ABBV-453 tablets once daily
(QD) in 28-day cycles. In Part 2, Arm 1, participants will receive continuous doses of oral
ABBV-453 tablets QD in combination with oral dexamethasone tablets once weekly in 28-day
cycles. In Part 2, Arm 2, participants will receive continuous doses of oral ABBV-453 tablets
QD in combination with subcutaneous injections of daratumumab every 1 to 4 weeks and oral
dexamethasone tablets once weekly in, 28-day cycles. In Part 2, Arm 3, participants will
receive continuous doses of oral ABBV-453 tablets QD in combination with subcutaneous
injections of daratumumab every 1 to 4 weeks, oral lenalidomide capsules QD on Days 1-21, and
oral dexamethasone tablets once weekly, in 28-day cycles.

There may be higher treatment burden for participants in this trial compared to their
standard of care. Participants will attend regular visits during the study at an approved
institution (hospital or clinic). The effect of the treatment will be frequently checked by
medical assessments, blood tests, and side effects.
Multiple Myeloma, Phase I
I
Baljevic, Muhamed
NCT05308654
VICCHEMP2230

Dose Optimization and Expansion Study of DFV890 in Adult Patients With Myeloid Diseases

Hematologic

Study CDFV890G12101 is an open-label, phase 1b, multicenter study with a randomized two-dose
optimization part, and a dose expansion part consisting of two groups evaluating DFV890 in
patients with myeloid diseases. The purpose of this study is to assess the safety,
tolerability, pharmacokinetics, pharmacodynamics, efficacy and recommended dose for single
agent DFV890 in patients with lower risk (LR: very low, low or intermediate risk)
myelodysplastic syndromes (LR MDS) and lower risk chronic myelomonocytic leukemia (LR CMML).
Hematologic
I
Kishtagari, Ashwin
NCT05552469
VICC-DTHEM23007P

Talazoparib for the Treatment of BRCA 1/2 Mutant Metastatic Breast Cancer

Breast

This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
Breast
II
Abramson, Vandana
NCT03990896
VICCBRE2265

Open-Label Study of the CDK4/6 Inhibitor SPH4336 in Subjects With Locally Advanced or Metastatic Liposarcomas

Sarcoma

Study SPH4336-US-01 is an open-label (no placebo), multicenter clinical trial to evaluate the
safety, blood levels (pharmacokinetics) and preliminary anti-tumor effects of SPH4336, a
selective enzyme blocker, in patients with specific types of liposarcomas (tumors expressing
the target of the study drug).
Sarcoma
II
Keedy, Vicki
NCT05580588
VICC-DTSAR23090