Skip to main content

Patient Search

KaCrole Higgins was diagnosed with breast cancer in 2020. “In May 2020, I found a lump in my breast. I cried. By June, it was diagnosed as breast cancer, triple positive, stage 1A. While getting this cancer diagnosis was devastating, it also became an opportunity. Suddenly, the cancer gave me clarity. It gave me clarity about what was important, what was good in my life, what was toxic in my life, and what I needed to do.” Click below to read more of KaCrole’s story

https://momentum.vicc.org/2022/04/cancer-gave-me-clarity/

If Landon Ryan had been diagnosed with bilateral retinoblastoma 10, 20 or 30 years ago, she might not be here today with nearly perfect vision.Thanks to recent improvements in the treatment for this rare form of cancer that almost exclusively affects children under the age of 5, the diagnosis had the power to change Landon’s life when she was 11 months old, but not to take it — or her eyesight. Click below to learn more about Landon and her story.

https://momentum.vicc.org/2022/04/brighter-outlook/
Displaying 111 - 120 of 300

Talazoparib for the Treatment of BRCA 1/2 Mutant Metastatic Breast Cancer

Breast

This phase II trial studies how well talazoparib works for the treatment of breast cancer with a BRCA 1 or BRCA 2 gene mutation that has spread to other places in the body (metastatic). Talazoparib is a study drug that inhibits (stops) the normal activity of certain proteins called poly (ADP-ribose) polymerases also called PARPs. PARPs are proteins that help repair deoxyribonucleic acid (DNA) mutations. PARP inhibitors, such as talazoparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. PARPs are needed to repair mistakes that can happen in DNA when cells divide. If the mistakes are not repaired, the defective cell will usually die and be replaced. Cells with mistakes in their DNA that do not die can become tumor cells. Tumor cells may be killed by a study drug, like talazoparib, that stops the normal activity of PARPs. Talazoparib may be effective in the treatment of metastatic breast cancer with BRCA1 or BRCA2 mutations.
Breast
II
Abramson, Vandana
NCT03990896
VICCBRE2265

Open-Label Study of the CDK4/6 Inhibitor SPH4336 in Subjects With Locally Advanced or Metastatic Liposarcomas

Sarcoma

Study SPH4336-US-01 is an open-label (no placebo), multicenter clinical trial to evaluate the
safety, blood levels (pharmacokinetics) and preliminary anti-tumor effects of SPH4336, a
selective enzyme blocker, in patients with specific types of liposarcomas (tumors expressing
the target of the study drug).
Sarcoma
II
Keedy, Vicki
NCT05580588
VICC-DTSAR23090

Ruxolitinib in Preventing Breast Cancer in Patients with High Risk and Precancerous Breast Lesions

Breast

This phase II trial studies how well ruxolitinib before surgery works in preventing breast cancer in patients with high risk and precancerous breast conditions. Ruxolitinib may changes the breast cell when administered to participants with precancerous breast conditions. Ruxolitinib may stop the growth of cells by blocking some of the enzymes needed for cell growth.
Breast
II
Meszoely, Ingrid
NCT02928978
VICCBRE1904

A Study of ASP3082 in Adults With Previously Treated Solid Tumors

Phase I

Genes contain genetic code which tell the body which proteins to make. Many types of cancer
are caused by changes, or mutations, in a gene called KRAS. Researchers are looking for ways
to stop the actions of abnormal proteins made from the mutated KRAS gene. The so-called G12D
mutation in the KRAS gene is common in people with some solid tumors.

ASP3082 is a potential new treatment for certain solid tumors in people who have the G12D
mutation in their KRAS gene. Before ASP3082 is available as a treatment, the researchers need
to understand how it is processed by and acts upon the body. This information will help find
a suitable dose and to check for potential medical problems from the treatment.

People in this study will be adults with locally advanced, unresectable or metastatic solid
tumors with the G12D mutation in their KRAS gene (G12D mutation). Locally advanced means the
cancer has spread to nearby tissue. Unresectable means the cancer cannot be removed by
surgery. Metastatic means the cancer has spread to other parts of the body. They will have
been previously treated with standard therapies or refused to receive those treatments. In
the European Union (EU) and South Korea, people who have refused to receive treatment with
standard therapies cannot take part.

The main aims of the study are: to check the safety of ASP3082 by itself and together with
cetuximab (a common cancer medicine), how well it is tolerated, and to find a suitable dose
of ASP3082 by itself and together with cetuximab.

This is an open-label study. This means that people in this study and clinic staff will know
that they will receive ASP3082.

This study will be in 2 parts. In Part 1, different small groups of people will receive lower
to higher doses of ASP3082, by itself, or together with cetuximab. Only people with
colorectal cancer will receive ASP3082 together with cetuximab. Any medical problems will be
recorded at each dose. This is done to find suitable doses of ASP3082 by itself or together
with cetuximab to use in Part 2 of the study. The first group will receive the lowest dose of
ASP3082. A medical expert panel will check the results from this group and decide if the next
group can receive a higher dose of ASP3082. The panel will do this for each group until all
groups have received ASP3082 (by itself or together with cetuximab) or until suitable doses
have been selected for Part 2.

In Part 2, other different small groups of people will receive ASP3082 by itself or together
with cetuximab, with the most suitable doses worked out from Part 1. This will help find a
more accurate dose of ASP3082 to use in future studies.

ASP3082, and cetuximab (if used), will be given through a vein. This is called an infusion.
Each treatment cycle is 21 days long. They will continue treatment until: they have medical
problems from the treatment they can't tolerate; their cancer gets worse; they start other
cancer treatment; they ask to stop treatment; they do not come back for treatment.

People will visit the clinic on certain days during their treatment, with extra visits during
the first 2 cycles of treatment. During these visits, the study doctors will check for any
medical problems from ASP3082 by itself or together with cetuximab. At some visits, other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, blood and urine tests and vital signs. Vital signs include temperature, pulse,
breathing rate, and blood pressure. (Blood oxygen levels will also be checked for people
treated with ASP3082 together with cetuximab.) Tumor samples will be taken during certain
visits during treatment and when treatment has finished.

People will visit the clinic within 7 days after stopping treatment. The study doctors will
check for any medical problems from ASP3082 by itself or together with cetuximab. Other
checks will include a medical examination, echocardiogram (ECHO) or multigated acquisition
(MUGA) scan, urine and blood tests and vital signs. After this, people will continue to visit
the clinic every 9 weeks. This is to check the condition of their cancer. They will do this
until 45 weeks after treatment stopped, or if their cancer is worse, they start other cancer
treatment, they ask to stop treatment, or they do not come back for treatment.

Also, people may visit the clinic at 30 days and 90 days after stopping treatment. At the
30-day visit, the study doctors will check for any medical problems from ASP3082 by itself or
together with cetuximab. People will have their vital signs checked and have some bloo
Phase I
I
Berlin, Jordan
NCT05382559
VICCPHI2207

A Trial Comparing Unrelated Donor BMT With IST for Pediatric and Young Adult Patients With Severe Aplastic Anemia (TransIT, BMT CTN 2202)

Pediatrics

Severe Aplastic Anemia (SAA) is a rare condition in which the body stops producing enough new
blood cells. SAA can be cured with immune suppressive therapy or a bone marrow transplant.
Regular treatment for patients with aplastic anemia who have a matched sibling (brother or
sister), or family donor is a bone marrow transplant. Patients without a matched family donor
normally are treated with immune suppressive therapy (IST). Match unrelated donor (URD) bone
marrow transplant (BMT) is used as a secondary treatment in patients who did not get better
with IST, had their disease come back, or a new worse disease replaced it (like leukemia).

This trial will compare time from randomization to failure of treatment or death from any
cause of IST versus URD BMT when used as initial therapy to treat SAA.

The trial will also assess whether health-related quality of life and early markers of
fertility differ between those randomized to URD BMT or IST, as well as assess the presence
of marrow failure-related genes and presence of gene mutations associated with MDS or
leukemia and the change in gene signatures after treatment in both study arms.

This study treatment does not include any investigational drugs. The medicines and procedures
in this study are standard for treatment of SAA.
Pediatrics
III
Connelly, James
NCT05600426
VICCPED2295

Study of Selinexor in Combination With Ruxolitinib in Myelofibrosis

Multiple Cancer Types

This is a global, multicenter Phase 1/3 study to evaluate the efficacy and safety of
selinexor plus ruxolitinib in JAK inhibitor (JAKi) treatment-nave myelofibrosis (MF)
participants. The study will be conducted in two phases: Phase 1 (open-label) and Phase 3
(double-blind). Phase 1 (enrollment completed) was an open-label evaluation of the safety and
recommended dose (RD) of selinexor in combination with ruxolitinib and included a dose
escalation using a standard 3+3 design (Phase 1a) and a dose expansion part (Phase 1b). In
Phase 3, JAKi treatment-nave MF participants are enrolled in 2:1 ratio to receive the
combination therapy of selinexor + ruxolitinib or the combination of placebo + ruxolitinib.
Hematologic, Phase I
I/II
Mohan, Sanjay
NCT04562389
VICCHEMP2130

A Study to Evaluate INCA033989 Administered in Participants With Myeloproliferative Neoplasms

Leukemia

This study is being conducted to evaluate the safety, tolerability, dose-limiting toxicity
(DLT) and determine the maximum tolerated dose (MTD) and/or recommended dose(s) for expansion
(RDE) of INCA033989 administered in participants with myeloproliferative neoplasms.
Leukemia
I
Savona, Michael
NCT06034002
VICC-DTHEM23416P

Acalabrutinib for the Treatment of Chronic Graft Versus Host Disease

Miscellaneous

This phase II trial studies how well acalabrutinib works in treating patients with chronic graft versus host disease. Acalabrutinib may be an effective treatment for graft-versus-host disease caused by a stem cell transplant.
Miscellaneous
II
Kitko, Carrie
NCT04198922
VICCCTT2122

A Study of LSTA1 When Added to Standard of Care Versus Standard of Care Alone in Patients With Advanced Solid Tumors

Multiple Cancer Types

The goal of this clinical trial is to test a new drug plus standard treatment compared with
standard treatment alone in patients with advanced head and neck squamous cell carcinoma and
cholangiocarcinoma.

The main questions it aims to answer are:

- is the new drug plus standard treatment safe and tolerable

- is the new drug plus standard treatment more effective than standard treatment
Gastrointestinal, Head/Neck
II
Heumann, Thatcher
NCT05712356
VICC-DTMDT23185

Nivolumab and Ipilimumab for the Treatment of Patients with Locally Advanced, Metastatic, or Unresectable Liver Cancer

Liver

This phase II trial tests whether nivolumab and ipilimumab works to shrink tumors in patients with liver cancer that has spread to nearby tissue or lymph nodes (locally advanced), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Nivolumab and ipilimumab may be effective in killing tumor cells in patients with liver cancer.
Liver
II
Goff, Laura
NCT05199285
VICCGI2277